Nanostructured Al-ZrAl3 materials consolidated via spark plasma sintering: Evaluation of their mechanical properties

نویسندگان

  • C. Rodriguez
  • R. Torrecillas
چکیده

Aluminium based nanostructured materials with additions of 0.5, 1 and 1.5 weight% of zirconium have been produced and sintered using the spark plasma sintering technique in order to promote the nucleation of ZrAl3 platelets. The mechanical behaviour of all these nanocomposites was determined by means of the Small Punch Test. Zirconium additions significantly decrease the mechanical properties of these products when sintering time at the sintering temperature (650oC) is short (3 minutes). Nevertheless, when the sintering time increases to 1 hour (intermetallic crystallization), the zirconium additions show the expected effect: the stiffness and the yield strength increase while ductility and toughness decrease. The maximum load increases until a 0.5 weight% Zr is attained and suddenly drops when the Zr content surpasses 1 weight%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Nanostructured Cu matrix Nanocomposites by High Energy Mechanical Milling and Spark Plasma Sintering

Spark plasma sintering (SPS) is a sintering process that is capable of sintering hard worked powders in short times. This technique was used to fabricate bulk Cu and Cu-SiC nanocomposites. Pure Cu and mixed powders of Cu including 4 vol% of SiC nanoparticles were mechanically alloyed for 25 h and sintered at 750˚C under vacuum condition by SPS method. Microstructures of the materials were chara...

متن کامل

Spark Plasma Sintering of Ultra-High Temperature Tantalum/Hafnium Carbides Composite

TaC and HfC are thought to have the highest melting point (~4000°C) among all refractory materials. The binary solid solution of TaC and HfC (Ta4HfC5) is also considered as the most refractory material with the melting point over 4000 °C and valuable physical and mechanical properties. The main goal of this work is to fabricate TaC/HfCbased composites which consolidated by means of spark plasma...

متن کامل

Friction stir welding of Al-Al2O3 nanocomposite with bimodal size of alumina reinforcement produced by spark plasma sintering

Solid state joining of powder metallurgy (P/M) processed and sintered by spark plasma sintering through friction stir welding (FSW) was studied. The nanocomposites were prepared via mechanical milling followed by spark plasma sintering. The microstructural and mechanical of the joints were evaluated as a function of the different processing parameters such as rotating and advancing speeds of th...

متن کامل

Matrix Structure Evolution and Nanoreinforcement Distribution in Mechanically Milled and Spark Plasma Sintered Al-SiC Nanocomposites

Development of homogenous metal matrix nanocomposites with uniform distribution of nanoreinforcement, preserved matrix nanostructure features, and improved properties, was possible by means of innovative processing techniques. In this work, Al-SiC nanocomposites were synthesized by mechanical milling and consolidated through spark plasma sintering. Field Emission Scanning Electron Microscope (F...

متن کامل

Friction stir welding of Al-Al2O3 nanocomposite with bimodal size of alumina reinforcement produced by spark plasma sintering

Solid state joining of powder metallurgy (P/M) processed and sintered by spark plasma sintering through friction stir welding (FSW) was studied. The nanocomposites were prepared via mechanical milling followed by spark plasma sintering. The microstructural and mechanical of the joints were evaluated as a function of the different processing parameters such as rotating and advancing speeds of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013